Biophysical characterization and modeling of lung surfactant components.

نویسندگان

  • E P Ingenito
  • L Mark
  • J Morris
  • F F Espinosa
  • R D Kamm
  • M Johnson
چکیده

The present study characterizes the dynamic interfacial properties of calf lung surfactant (CLS) and samples reconstituted in a stepwise fashion from phospholipid (PL), hydrophobic apoprotein (HA), surfactant apoprotein A (SP-A), and neutral lipid fractions. Dipalmitoylphosphatidylcholine (DPPC), the major PL component of surfactant, was examined for comparison. Surface tension was measured over a range of oscillation frequencies (1-100 cycles/min) and bulk phase concentrations (0.01-1 mg/ml) by using a pulsating bubble surfactometer. Distinct differences in behavior were seen between samples. These differences were interpreted by using a previously validated model of surfactant adsorption kinetics that describes function in terms of 1) adsorption rate coefficient (k1), 2) desorption rate coefficient (k2), 3) minimum equilibrium surface tension (gamma*), 4) minimum surface tension at film collapse (gammamin), and 5) change in surface tension with interfacial area for gamma < gamma* (m2). Results show that DPPC and PL have k1 and k2 values several orders of magnitude lower than CLS. PL had a gammamin of 19-20 dyn/cm, significantly greater than CLS (nearly zero). Addition of the HA to PL restored dynamic interfacial behavior to nearly that of CLS. However, m2 remained at a reduced level. Addition of the SP-A to PL + HA restored m2 to a level similar to that of CLS. No further improvement in function occurred with the addition of the neutral lipid. These results support prior studies that show addition of HA to the PL markedly increases adsorption and film stability. However, SP-A is required to completely normalize dynamic behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity and biophysical inhibition resistance of a novel synthetic lung surfactant containing Super-Mini-B DATK peptide

Background/objectives. This study examines the surface activity, resistance to biophysical inhibition, and pulmonary efficacy of a synthetic lung surfactant containing glycerophospholipids combined with Super Mini-B (S-MB) DATK, a novel and stable molecular mimic of lung surfactant protein (SP)-B. The objective of the work is to test whether S-MB DATK synthetic surfactant has favorable biophysi...

متن کامل

The effect of Environmental exposure to some chemical solvents on DPPC as important component of lung surfactant: an ab initio study

One of the main components of lung alveoli is surfactant. DPPC (Dipalmitolphosphatidylcholine) is thepredominant lipid component in lung surfactant that is responsible for lowering surface tension in alveoli in thisarticle. We used a very approximate model with computational method of Ab initio to describe the interactionsbetween DPPC as important component of lung surfactant and some chemical ...

متن کامل

Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury.

Mechanical ventilation may lead to an impairment of the endogenous surfactant system, which is one of the mechanisms by which this intervention contributes to the progression of acute lung injury. The most extensively studied mechanism of surfactant dysfunction is serum protein inhibition. However, recent studies indicate that hydrophobic components of surfactant may also contribute. It was hyp...

متن کامل

Alterations to surfactant precede physiological deterioration during high tidal volume ventilation.

Lung injury due to mechanical ventilation is associated with an impairment of endogenous surfactant. It is unknown whether this impairment is a consequence of or an active contributor to the development and progression of lung injury. To investigate this issue, the present study addressed three questions: Do alterations to surfactant precede physiological lung dysfunction during mechanical vent...

متن کامل

Effects of lung surfactant proteins, SP-B and SP-C, and palmitic acid on monolayer stability.

Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 86 5  شماره 

صفحات  -

تاریخ انتشار 1999